Quenching of Fluorescence in Small Molecules

JEFFREY I. STEINFELD¹

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received February 24, 1970

The optical fluorescence of small molecules in a lowdensity gas was first observed by Lommel² in 1883. Soon after that (in terms of the leisurely time scale of those early days), Wood⁸ noticed that the fluorescence was diminished by admixture of gases, and the study of fluorescence quenching was under way. In the ensuing vears, a great deal of phenomenological information on quenching was collected, much of which can be found in Pringsheim's text.⁴

Typically the fluorescing species was irradiated in a "T" cell and the fluorescent emission was observed at right angles to the exciting light. A foreign gas was then admitted to the cell and the diminution of fluorescence was observed as a function of the pressure of the added gas. In photochemists' jargon, the reduction in intensity of the emitted light is called "quenching."

The standard kinetic treatment of quenching and related processes is by means of a graphical method devised by Stern and Volmer⁵ over 50 years ago and now named in their honor. If one assumes a simple mechanism

$$\begin{array}{ccc} \mathbf{A} + h_{\nu} & \stackrel{\mathbf{I}}{\longrightarrow} \mathbf{A}^{*} & \text{absorption} \\ \mathbf{A}^{*} + \mathbf{X} & \stackrel{\mathbf{Q}}{\longrightarrow} \mathbf{A} + \mathbf{X} & \text{quenching} \\ \mathbf{A}^{*} & \stackrel{k_{f}}{\longrightarrow} \mathbf{A} + h_{\nu'} & \text{fluorescence, } k_{f} = 1/\tau_{\text{rad}} \end{array}$$

then, by means of a steady-state treatment, one may readily derive

$$\frac{I_0}{I} - 1 = Q \tau_{\rm rad} X$$

In the above expression, I_0 is the intensity of fluorescence in the absence of a quencher, and I is the intensity of the fluorescence with a pressure (X) of the quenching species. Thus, if one knows the radiative lifetime of species A*, one may deduce the quenching constant Q and, hence, in a collision theory model, the quenching cross section σ_0^2 .

Many studies have been undertaken to correlate the structure and the cross section of various quenching species. Other studies have dealt with the fate of the excited quenching species. As a result of obtaining the additional energy, the excited quenching species could undergo chemical reaction (a "sensitized" reaction), or themselves fluoresce or, more commonly, simply degrade the excess energy into heat.

- Amreu F. Shoan Foundation Fellow.
 E. Lommel, Ann. Phys. Chem., 19, 356 (1883).
 R. W. Wood, Phil. Mag., 21, 309 (1911).
 P. Pringsheim, "Fluorescence and Phosphorescence," Interscience, New York, N. Y., 1965.
 O. Stern and M. Volmer, Phys. Z., 20, 183 (1919).

It is only recently, however, that measurements have become accurate enough to provide data which demonstrate meaningful variations among different molecular systems and which can be interpreted to yield information about repulsive potential curves inaccessible to ordinary spectroscopy. In this Account, we shall first present the kinetics of the process, discuss some of the techniques for measuring quenching efficiencies (with their associated problems), and give a summary of data for some selected, well-studied systems. We shall then discuss a recently published model for electronic quenching by gas collisions, and the phenomena of quenching by external electromagnetic fields and by intramolecular coupling effects. Finally, a complete set of potential curves for the very well-studied diatomic iodine system is presented, combining results of both spectroscopic and quenching studies.

Stochastic Model for Quenching

The classic approach to the kinetics of fluorescence quenching is via the photostationary equations introduced by Stern and Volmer.⁵ It may be instructive, however, to reach this point via the currently more fashionable stochastic formulation of rate equations.⁶ To proceed with this formulation, we first note that the population of excited molecules at a time t after excitation is given by

$$N(t) = N_0 e^{-k_{\rm rad}t}$$

where N_0 is the population at t = 0 and $k_{rad} = (\tau_{rad})^{-1}$. Thus, the rate of photon emission by excited molecules that have lasted a time τ following excitation is given by

$$N'(\tau) = \left(\frac{\mathrm{d}N(t)}{\mathrm{d}t}\right)_{t=\tau} = N_0 k_{\mathrm{rad}} e^{-k_{\mathrm{rad}}t}$$

We now ask for the probability that, in this time τ , a quenching collision will not have taken place; this is just

$$\{1 - P_{\text{quench}}(t \leq \tau)\} = e^{-ZQ\tau}$$

.

where

$$Z_{\rm Q} = \sqrt{2} N_{\rm gas} \sigma_{\rm Q}^2 \bar{v} \tag{1}$$

defining an effective quenching cross section σ_Q^2 , with N_{gas} as the density (molecules cm⁻³) and \bar{v} as the mean thermal velocity of the collision pair. We can also write

$$Z_{Q} = QX$$

with X the gas concentration or pressure (moles liter⁻¹, Torr, etc.), thus defining the quenching constant Q.

The total fluorescence intensity I is proportional to the net emission rate, which is the resultant of molecules emitting over a complete distribution of lifetimes, reduced by the probability that quenching has occurred. Thus

$$I \propto k_{\rm emission} = \int_0^\infty N_0 k_{\rm rad} e^{-k_{\rm rad}\tau} e^{-Z_{\rm Q}\tau} d\tau$$

(6) I. Oppenheim, K. E. Shuler, and G. H. Weiss, J. Chem. Phys., 50, 460 (1969).

⁽¹⁾ Alfred P. Sloan Foundation Fellow.

$$= N_0 k_{\rm rad} \int_0^\infty e^{-(k_{\rm rad} + Z_{\rm Q})\tau} d\tau$$
$$= \frac{N_0 k_{\rm rad}}{k_{\rm rad} + Z_{\rm Q}}$$

In the absence of quenching, when $Z_Q = 0$, all the excited molecules emit; thus

$$I_0 = I \ (X = 0) \ \propto \ N_0$$

so that

$$\frac{I_0}{I} = \frac{k_{\rm rad} + Z_{\rm Q}}{k_{\rm rad}} = 1 + Z_{\rm Q} \tau_{\rm rad} = 1 + Q' X$$

where $Q' = Q\tau_{\rm rad}$; or

$$\frac{I_0}{I} - 1 = Q'X \tag{2}$$

which is just the Stern-Volmer quenching law previously obtained.

Methods of Measuring Quenching Constants

The form of eq 2 suggests a direct, obvious way of measuring Q'. This is: measure a fluorescence intensity under a given set of conditions, and then admit a foreign gas at various pressures; the resulting intensities are then plotted according to eq 2, yielding Q' directly. Although this seems straightforward, this method is fraught with many difficulties, arising mainly from failure of Beer's law for absorption.⁷ Essentially, the foreign gas pressure can affect the widths of the narrow absorption lines in the spectrum of the fluorescing gas. This can change not only the effective absorption coefficient, and thus the amount of energy being absorbed by the sample (*i.e.*, N_0 is not a constant as X is varied), but also the intensity of light that reaches the volume of fluorescing sample in the interior of the cell. These effects can reinforce or cancel each other and thus provide a very erratic dependence of I upon X.

There is an alternative method of measurement which avoids the above-mentioned difficulties but introduces new ones; this is based on lifetime measurements. The relation employed is that of the additivity of parallel first-order processes, so that eq 3 obtains. The life-

$$\tau_{\text{measured}}^{-1} = \tau_{\text{rad}}^{-1} + QX \tag{3}$$

times themselves can in principle be measured by applying either pulsed exciting radiation, and observing the decay of the luminescence, or modulated exciting radiation, and observing the phase shift $\delta\phi$ of the fluorescence.^{8,9} This phase shift can be related to the lifetime by use of the expression $\tan \delta\phi = 2\pi f\tau$, where fis the modulation frequency of the light. The difficulty with the former method is the low signal resulting from the small number of photons available in a sufficiently narrow, monochromatic pulse from most light sources, although dye solution lasers now offer some hope of overcoming this limitation. Typically, photon counting techniques must be applied to the fluorescence signal. The phase shift technique suffers from interference by scattered light having zero phase shift, which yields an artificially short measured lifetime.

Quenching by Collision-Induced Predissociation

Quenching by Cross Sections. Although a large number of molecules have been observed to luminesce and to be quenched by foreign gas collisions, only a relatively small number have been sufficiently well characterized to provide quantitative data on the efficiencies of quenching collisions. In addition to having good values for Q', corrected for all the absorption nonlinearities mentioned above, we need to know the radiative lifetime, τ_{rad} , in order to be able to convert to absolute collision efficiencies. These data are available for those systems summarized in Table I.

In Table I, quenching efficiencies are given as effective cross sections in units of ångströms squared $(10^{-16}$ cm²). These are derived from the measured Q' using eq 1, *i.e.*

$$\sigma_{
m Q}{}^2 = 1000 Q'/(\sqrt{2} \mathfrak{N}_0 au_{
m rad} ar{v})$$

where Q' is expressed in liters mole⁻¹ and \mathfrak{N}_0 is Avogadro's number.

One point which may be noted from Table I is the variety of methods which have been used to excite the fluorescing species. These include optical excitation by a resonance lamp or a laser, excitation by white light, radiofrequency or microwave discharge, photodissociation yielding an excited fragment, or photosensitization with metastable excited atoms. Only the first method can produce a pure vibration-rotation state of the excited molecule; the others produce a wide distribution of states over which the measured quenching constant is averaged.

The most extensively studied systems thus far are NO and I₂. For the former system, cross sections for the $A^2\Sigma^+$ state obtained independently in Soviet, American, and British laboratories (Table I, columns a-c) seem to agree within a factor of ten or better; this is considered a reasonably good level of agreement for many of these measurements. A similar consistency is found for the Japanese, American, and Dutch work on the $A^2\Sigma^+$ state of OH (Table I, columns l-n). It is clear from columns d and e, though, that the magnitudes of the quenching constants appropriate to one excited state of a particular molecule need bear no relation to those for some other excited state.

The B³II_{0u+} state of iodine has had the longest history of investigation,^{2,3} but quantitative quenching cross sections for a succession of vibrational levels in this state were first obtained in Klemperer's laboratory at Harvard, and this work has been continued in our laboratory at M.I.T. (Table I, columns f-i). The variation in cross section between the different vibration levels appears to be due primarily to a Franck– Condon effect (see following section).

⁽⁷⁾ R. H. Kummler and M. McCarty, J. Phys. Chem., 71, 2456 (1967).
(8) L. Brewer, R. A. Berg, and G. M. Rosenblatt, J. Chem. Phys.,

⁽⁸⁾ L. Brewer, R. A. Berg, and G. M. Rosenblatt, J. Chem. Phys., 38, 1381 (1963).

⁽⁹⁾ A. Chutjian, J. K. Link, and L. Brewer, ibid., 46, 2666 (1967).

i1 0-12 0-8 3 0 Thermal 0 4, 6, 7, 9 = Thermal Thermal J' = 2 K' = 0-21 Thermal K' = 7 9 10, 11 10, 11 10, 11 10, 11 10, 11 5.d Photo- Ar Photo- 0H 10, 11 5.d Photo- 0H Aisconn 106, 13 Xe^+ Hg	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-12 0-8 3 0 Thermal 4, 6, 7, 9 hermal Thermal $J' = 2$ $K' = 0-21$ Thermal $0, 11$ Photo- Photo- Ar Photo- OH Bi $10, 11$ Photo- Photo- Ar Photo- OH Bi $10, 11$ Xe^+ Hg Shoto- Photo- Ar Photo- OH Bi 307.7 $843 eV$ 4358 NsO at of NsO at 1236 Å $4eed$ 307.7 $843 eV$ 4358 A70 Å 1236 Å 1236 Å 1236 Å $eeed$ 1126 1.1 0.002 1.1 7.2 0.63 0.024 $1.$ 1.061 3.136 1.060 1.064 1.060 1.064 1.066 1.066 1.066 1.066 1.060 1.024 1.1 1.05 2.1 0.004 0.41 7.8 2.4 1.05 2.1 2.6 2.1 2.165 2.165 2.165 2.165 2.165 2.165 <	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-12 0-8 3 0 Thermal $X' = 2$ $K' = 7.9$ rmai Thermal $J' = 2$ $K' = 0-21$ Thermal $K' = 7.9$ otoo Photo- Ar Photo- OH D, 11 seen dissoon 1066 Å dissoon lob A Seen 4.6, 7, 9 (50 at) ONO at Photo- OH D, 11 Seen 43 eV) 4358 (50 at) 0.850 at 1236 Å 4.60 Å 5.4 9.3067.7 843 eV) 4358 (000 at) 1236 Å 4.60 Å 1236 Å 4.60 Å 1336 Å 1358 Å 4.60 Å 1358 Å 1358 Å 1356 Å 1.0 1.1 2.5 0.024 $1.$ $1.$ 2.6 $1.$ 3.0 0.24 $1.$ 3.0 0.24 $1.$ 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 <	-12 0-8 3 0 Thermal $X' = 2$ Thermal $X' = 7$ Y_{10} Y_{10} Y_{11} $Y = 7$ Y_{12} <	12 0-8 3 0 Thermal $Y' = 2$ K' = 0-21 Thermal $Y' = 10, 11$ Thermal $Y' = 10, 11$ Thermal $Y = 10, 11$ $X = 10, 100$ $X = 10, 1000$ $X = 10, 10000$ $X = 10, 10000$ $X = 10, 10000$ $X = 10, 10000$ $X = 10, 100000$ $X = 10, 100000000$ $X = 10, 100000000000000000000000000000000$	2 0-8 3 0 Thermal $I' = 2$ $K' =$ Thermal $K' =$	0-8 3 mathom 0 mathom Thermal model disson 3^{-2} model disson 1^{-1} model disson <t< th=""><th>al Thermal $J' = 2$ $K' = 0$ Thermal 0, 4, 6, 7, 9 Thermal $J' = 2$ $K' = 0$-21 Thermal $K' =$ Thermal Thermal $J' = 2$ $K' = 0$-21 Thermal $K' =$ Thermal at of No0 at dissoen lamp 3067.7 (8,43 eV) 4358 at of No0 at 1236 Å dissoen lamp 3067.7 (8,43 eV) 4358 at of No0 at 1236 Å dissoen lamp 3067.7 (8,43 eV) 4358 at of No at 1236 Å dissoen lamp 3067.7 (8,43 eV) 4358 at of No at 1236 Å dissoen lamp 3067.7 (8,43 eV) 4358 at of No at 1236 Å dissoen lamp 3067.7 (8,43 eV) 4358 at 0.024 1. 2.5 0.63 0.031 3. M 24 2.4 1.05 2.4 0.031 3. 3.9 7 10 24 9. 3.0 20 25 3.5 7 3. 3.5 7 5 5. 4.5 7 5 5. 5.7 7 5 5. 5</th><th>al Thermai $J' = 2$ $K' = 0-21$ Thermai $K' =$ Thermai $10, 11$ $X = 4, 43. \text{ eV}$ 4338 at 0.024 1. 2 1.1 7.2 0.63 tered) at 1.266 Å tered) 1.226 Å tered 1.2266 Å tered 1.2266 Å</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th></t<>	al Thermal $J' = 2$ $K' = 0$ Thermal 0 , 4, 6, 7, 9 Thermal $J' = 2$ $K' = 0$ -21 Thermal $K' =$ Thermal Thermal $J' = 2$ $K' = 0$ -21 Thermal $K' =$ Thermal at of No0 at dissoen lamp 3067.7 (8,43 eV) 4358 at of No0 at 1236 Å dissoen lamp 3067.7 (8,43 eV) 4358 at of No0 at 1236 Å dissoen lamp 3067.7 (8,43 eV) 4358 at of No at 1236 Å dissoen lamp 3067.7 (8,43 eV) 4358 at of No at 1236 Å dissoen lamp 3067.7 (8,43 eV) 4358 at of No at 1236 Å dissoen lamp 3067.7 (8,43 eV) 4358 at 0.024 1. 2.5 0.63 0.031 3. M 24 2.4 1.05 2.4 0.031 3. 3.9 7 10 24 9. 3.0 20 25 3.5 7 3. 3.5 7 5 5. 4.5 7 5 5. 5.7 7 5 5. 5	al Thermai $J' = 2$ $K' = 0-21$ Thermai $K' =$ Thermai $10, 11$ $X = 4, 43. \text{ eV}$ 4338 at 0.024 1. 2 1.1 7.2 0.63 tered) at 1.266 Å tered) 1.226 Å tered 1.2266 Å tered 1.2266 Å	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0-120-830ThermalThermalThermalJ' = 2K' = 0-21ThermalFhoto-Photo-ArPhoto-0HIoPhoto-ArPhoto-0HIssoendissoenlo66ÅdissoenI470Å1236Å1236Å (1470) Å1236Å1236Å (1470) Å1236Å1236Å (20.002) 1.17.20.632.5	0-12 0-8 3 0 Thermal Thermal Thermal $J' = 2$ $K' = 0-21$ Thermal Photo- Photo- Ar Photo- OH dissoen dissoen 1066 Å dissoen lamp of N ₂ O at of N ₂ O at 066 Å dissoen lamp 1470 Å 1236 Å 1236 Å tered) 2.5 0.002 1.1 7.2 0.63 <0.0004	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-12 0-8 3 0 Thermal ermal Thermal $J' = 2$ $K' = 0-21$ Thermal 10 hoto- Photo- Ar Photo- OH 10 hoto- Photo- Ar Photo- OH 10 100 at Photo- Ar Photo- OH 10 100 at 06.4 0.41 30 1236 A $until, alterial 30 1002 1.1 7.2 0.63 1236 A tered) 1236 A tered) 10 1002 1.1 7.2 0.63 12.8 <2 <2 0.004 0.41 7.2 0.63 <2.4 <2.4 0.004 24 57 2.4 2.4 <2.4 $	12 0-8 3 0 Thermal K 0-21 Thermal K armal Thermal J' = 2 K' = 0-21 Thermal 10 noto- Photo- Ar Photo- OH 10 secon dissoen 1066 Å dissoen NH 30 to At 1236 Å of H/50 at (unfil- 30 to A 1236 Å tered) 30 0.02 1.1 7.2 0.63 0.02 1.1 7.2 0.63 .0004 0.41 7.8 <2	12 0-8 3 0 Thermal K = 0-21 Thermal K rmain Thermal J' = 2 K' = 0-21 Thermal K 10 roto- Photo- Ar Photo- OH 1 seen dissoen 1066 Å dissoen Iamp 30 0 \dot{A} Photo- OH 1 1 \dot{O} \dot{A} Photo- OH 1 1 \dot{O} \dot{A} Photo- OH 1 1 \dot{O} \dot{A} \dot{O} \dot{A} \dot{A} \dot{A} \dot{O} \dot{A} \dot{A} \dot{A} \dot{A} \dot{A} \dot{O} \dot{A} \dot{A} \dot{A} \dot{A} \dot{A} \dot{O} \dot{A}	12 0-8 3 0 Thermal K = 0-21 Thermal K = 0 Thermal T	2 0-8 3 0 Thermal 1 mail Thermal $J' = 2$ $K' = 0-21$ Thermal 10 too Photo- Ar Photo- OH 10 ocn Risson 1066 Å disson att solution 30 30 or 1236 Å att solution 1236 Å tered) 1 1 Å 1236 Å 2.4 0.63 0.64 2.4 30 002 1.1 7.2 0.63 0.63 4 1 004 2.4 2.4 2.4 3.9 1 1 005 6.4 3.9 6.3 7 1 58 6.3 6.3 7 1 1 59 20 2.4 3.9 7 1 66 3 5.4 6.3 7 1 58 6.3 6.3 7 1 35 59 20	al Thermal $J' = 2$ $K' = 0-21$ Thermal K Photo- Ar Photo- OH 10 at dissoen 1066 Å dissoen lamp 30 at of NAO at 1236 Å tered) 1236 Å tered) 1236 Å tered) 1236 Å 1236 Å 1236 Å 1236 Å 1236 Å 10511 Å 1236 Å 10511 Å 1236 Å 1051 Å 10511 Å 1236 Å 1051 Å	al Thermal $J' = 2$ $K' = 0-21$ Thermal K Thermal $J' = 2$ $K' = 0-21$ Thermal K Photo- Ar Photo- OH 10 at dissoen lamp 30 at of N ₂ O at dissoen lamp 30 1236 Å dissoen lamp 30 1236 Å ered) 1236 Å tered) 1236 Å ered) 1236 Å tered) 1236 Å 0.41 7.2 0.63 1.1 7.2 0.63 1236 Å 0.41 7.3 -2.4 3.9 05 6.4 3.9 57 2.4 6.3 7 1 58 6.3 7 1 58 6.3 7 1 58 45 16 3 45 16 3	al Thermal $J' = 2$ $K' = 0-21$ Thermal K Photo- Ar Photo- OH 10 dissoen 1066 Å dissoen lamp 30 at 0f NAO at (unit) 1236 Å tered) 1236 Å tered) 1236 Å 1236 Å 1236 Å 1236 Å 10.41 2.5 0.63 04 0.41 2.5 0.63 1236 Å tered) 1336 Å tered 10.41 2.5 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	0-8 3 0 Thermal J' = 2 K' = 0-21 Thermal K Photo- Ar Photo- OH 10 <td>0-8 3 0 Thermal Thermal $J' = 2$ K' = 0-21 Thermal Photo- Ar Photo- OH Photo- Ar Photo- OH Photo- Ar Photo- OH Photo- Ar Photo- OH Photo- 1066 Å dissoen lamp 30 of NiO at 7.2 0.63 tered) 1236 Å 1.1 7.2 0.61 Ho 2.4 2.4 2.5 7.8 2.4 3.9 7 2.6 3.9 5.7 2.4 3.9 2.8 6.3 7 1 58 6.3 7 1 58 57 2.4 3.9 42 2.5 3.9 4.5 16 39 15 35 4.5 16</td> <td>0-8 $3 = 2$ K' = 0-21 Thermal K = 0 Thermal J' = 2 K' = 0-21 Thermal K Photo- Ar Photo- OH 10 dissoen 1066 Å dissoen ann 10 of NiO at 1236 Å tered) 1236 Å tered) 1236 Å 1.1 7.2 0.63 7 1 2.5 0.41 2.4 2.4 3.9 7 1 24 57 2.4 3.9 7 1 5 2.4 3.9 7 1 58 6.4 3.9 6.3 7 1 5 5 4 5 5 4 5 1 5 5</td>	0-8 3 0 Thermal Thermal $J' = 2$ K' = 0-21 Thermal Photo- Ar Photo- OH Photo- Ar Photo- OH Photo- Ar Photo- OH Photo- Ar Photo- OH Photo- 1066 Å dissoen lamp 30 of NiO at 7.2 0.63 tered) 1236 Å 1.1 7.2 0.61 Ho 2.4 2.4 2.5 7.8 2.4 3.9 7 2.6 3.9 5.7 2.4 3.9 2.8 6.3 7 1 58 6.3 7 1 58 57 2.4 3.9 42 2.5 3.9 4.5 16 39 15 35 4.5 16	0-8 $3 = 2$ K' = 0-21 Thermal K = 0 Thermal J' = 2 K' = 0-21 Thermal K Photo- Ar Photo- OH 10 dissoen 1066 Å dissoen ann 10 of NiO at 1236 Å tered) 1236 Å tered) 1236 Å 1.1 7.2 0.63 7 1 2.5 0.41 2.4 2.4 3.9 7 1 24 57 2.4 3.9 7 1 5 2.4 3.9 7 1 58 6.4 3.9 6.3 7 1 5 5 4 5 5 4 5 1 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-12 $0-8$ 3 Thermal Thermal $y' = 2$ Photo- Photo- Ar issoen 1066 Å Ar of NsO at of NsO at 1236 Å 1470 Å 1236 Å 6.4 <0.002	0-12 $0-8$ 3 Thermal Thermal $j' = 2$ Photo- Photo- Ar dissoen dissoen 1066 Å of NrO at of NrO at 0 stat 1470 Å 1236 Å 1.1 7.2 <0.002	0-12 $0-8$ 3 hermal Thermal $j' = 2$ Photo- Photo- Ar issoen 1066 Å Ar No0 at of Nsoen 1066 Å 470 Å 1236 Å 6.4 0.002 1.1 7.2 0.004 0.41 2.5	-12 0-8 3 ermal Thermal $J' = 2$ hoto- Photo- Ar soorn discorn 1066 Å i O at of Niso at 70 Å 1236 Å 6.4 0.002 1.1 7.2 0.004 0.41 2.5 0.004 24 57	-12 0-8 3 armai Thermai $J' = 2$ otoo Photo- Ar secon dissoon 1066 Å foO at of No at of No at foO at of No at 1236 Å 002 1.1 7.2 .0004 0.41 2.5 .0005 6.4 .0005 6.4	12 $0-8$ 3 irmai Thermai $J' = 2$ otoc Photo- Ar soen dissoen 1066 Å 0 Å 1236 Å 6.4 0 Å 1236 Å 5.4 0.002 1.1 7.2 0.004 0.41 2.5 0.004 24 57 0.005 6.4 57 0.005 58 58	12 $0-8$ 3 maal Thermaal $J' = 2$ oto- Photo- Ar 0 å 1236 å 1.1 0 å 1.1 7.2 0004 0.41 2.5 004 24 57 95 58 7 42 7 42	2 0-8 3 mail Thermal $J' = 2$ too Photo- Ar too Photo- Ar too dissoun 1066 Å Å 1236 Å 4 002 1.1 7.2 004 0.41 2.5 004 24 57 55 58 57 56 2.8 58 59 20 39	al Thermal $J' = 2$ Photo- Ar dissoen 1066 Å at $0f N_{4}O$ at 1236 Å 1236 Å 1236 Å 1.1 $7.20.41$ $2.50.4$ 0.41 $2.5575858585858585850585850585757575757575757575757585950585859505058505$	al Thermal $J' = 2$ Photo- A_{T} Photo- A_{T} Photo- A_{T} Photo- A_{T} 1236 Å 1236 Å 1236 Å 1.1 2.5 004 0.41 2.5 005 6.4 57 57 57 57 57 57 57 57 57 57	al Thermal $J' = 2$ Photo Ar at $Photo Ar$ dissoen 1066 Å at 1236 Å 1236 Å 1.1 $7.20.41$ $2.50.4$ 0.41 $2.50.4$ $2.50.4$ 5758585857007 392007 39	Thermal $J' = 2$ Thermal $J' = 2$ Photo- A_T disson 1066 Å disson 1066 Å 1236 Å 1.1 $7.21.1$ $7.22.56.4$ 5.72858585857739739	Thermal $J' = 2$ Thermal $J' = 2$ Photo- A_T iPhoto- A_T of NsO at 1236 Å 0.41 2.5 0.41 2.5 24 57 28 58 58 58 29 20 39 39	Thermal $J' = 2$ Photo- Ar Photo- Ar of N ₅ O at 1236 Å 0.41 2.5 0.41 2.5 0.41 2.5 0.41 2.5 1.1 7.2 28 58 58 58 58 58 58 53 39
(1 0–12 = Thermal T 9 Photo- 3.6 Photo-	0-12 Thermal T Photo- dissoen of N ₂ O at of 1470 Å	0-12 Thermal T Photo- dissocn of NrO at of 1470 Å 1	0-12 Thermal T Photo- of N40 at of 1470 Å 1	0-12 Thermal T Photo- dissoen of Nz0 at of 1470 Å 1 20.002	0-12 hermal T Photo- of Nisoen 0.002 0.0004 0.004	-12 ermal T ssoen of 70 Å 1 .0004 .0004	-112 -12 -1	-12 -12 -12 -12 -12 -12 -12 -12	12 mail T oto- 0 0 0 Å 1 0004 0004 0004 0005 0004 0004 0005 0004 0006 0004 0006 0004 0006 000 000	2 mai Å Å Å Å Å Å 1 002 004 004 004 005 005 004 004 005 005	²	002 7 07 17 17 17 17 17 17 17 17 17 17 17 17 17	007 005 ^{4 4 4 4 4} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
- 9.2%	4							$\begin{array}{c c} & \Gamma_{\text{res}} \\ & \Gamma_{\text{res}} \\ & \Pi_{\text{res}} \\ & \Pi_{\text{res}}$	$\begin{array}{ccc} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} \\ & \Gamma_{\rm Ph} & \Gamma_{\rm Ph} \\ & \Gamma_{\rm$	Phon Phot 1470 1470 1470 1470 1470 1470 1470 1470	Therm Therm $T_{1,0}^{0-1/3}$ Photomorphic dissociation of N ₂ O $_{1470}^{0}$ of N ₂ O $_{1470}^{0}$ (1470) $_{117}^{0}$ (17) $_{117}^{0$	Therm Therm Therm Therm Photo 0 Alssoc of N ₂ O 1 N ₂ O 1 1470 1 1470 1 1170	$\begin{array}{ccc} & 0 - 12 \\ \text{Photo} & 0 \\ \text{dissood} \\ \text{dissood} \\ \text{of N(0)} \\ 1470 \\ 1470 \\ 0.0 \\ 0 \\ 0.0 \\ 0 \\ 0.0 \\ 0 \\ 0.0 \\ 0 \\ $	Thermal Photo- dissoen of N ₂ O at N ₂ O at 1470 Å (1470 Å (17)	Thermal Thermal Photo- dissoen of N ₂ O at 1470 Å < 0.0004 < 0.0004 < 0.0004 < 0.0005 < 0.0007 < 0.00	Thermal Thermal Photo- dissoen of $N_{2}O_{at}$ 1470 Å < 0.0005 < 0.00045 < 0.00045 < 0.00045 < 0.0005 < 0.00045 < 0.00045
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= J ['] = J ^{''} = J ^{'''} = J ^{'''} = J ^{''''} = J ^{'''''} = J ^{''''''' = J^{'''''''''''''''''''''''}}	 J⁻ J⁻ J⁻ 44 34 11, 15 29 95 Å 5461 Å laser 5086 Å 5145 Å 0.94 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
37, 44 rf dis- Xe Na charae aro 5805 <i>l</i>	37, 44 rf dis- Xe Na charge arc 5895 Å	Tf dis-Xe Na charge arc 5895 Å	37, 44 rf dis- Xe Na charge arc 5895 Å 14 0.19 0.55	rf dis- Xe 37, 44 rf dis- Xe Na charge arc 5895 Å 14 0.19 24 2.5	rf dis- Xe Na charge arc 5895 Å charge arc 5895 Å 14 0.15 24 2.5 2.5 1.1 0.66	rf dis- Xe Na charge arc 5895 Å 14 0.19 14 0.56 24 2.5 5.7 1.1 0.66	rf dis- Xe Na charge arc 5895 Å eharge arc 5895 Å 14 0.19 24 2.5 24 2.5 5.7 1.1 0.66 41 2.9	rf dis- Xe Na charge arc 5895 Å elarge arc 5895 Å 14 0.19 0.59 24 2.5 5.7 1.1 0.66 41 2.9 3.4 530 9.0	rf dis- Xe Na charge arc 5895 Å 14 0.19 24 2.5 24 2.5 1.1 0.66 41 2.9 41 2.9 9.5 9.5	rf dis- rf dis- charge arc 5895 Å arc 5895 Å 14 0.19 24 2.5 24 2.5 24 2.5 7.7 14 1.1 0.60 41 2.9 3.4 3.4 2.9 5.7 2.5 7.7 2.5 3.4 0.50 3.4 1.1 1.1 0.65 3.4 1.1 2.5 5.7 2.5 5.7 2.5 5.7 2.5 5.7 2.5 5.7 2.5 5.7 2.5 5.7 2.5 5.7 2.5 5.7 2.5 5.7 2.5 5.7 2.5 5.7 2.5 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5	rf dis- rf dis- charge arc 5895 Å 14 0.19 24 2.5 24 2.5 1.1 0.66 41 2.9 5.7 41 2.9 9.6 75 9.0 9.0 0.75	rf dis- rf dis- enarge arc 5895 Å 14 0.19 24 2.5 24 2.5 5.7 1.1 0.60 1.1 0.60 9.5 9.5 230 9.0 9.7 73 78	rf dis- rf dis- charge arc 5895 Å 14 0.19 0.59 1.1 0.60 1.1 0.60 9.5 9.5 24 2.5 5.7 14 0.19 0.50 9.0 9.5 73 73 78	rf dis- rf dis- charge arc 5895 Å 14 0.19 0.59 1.1 0.60 1.1 0.60 9.5 530 9.0 9.5 530 9.0 78 78 78	rf dis- rf dis- enarge arc 5895 Å arc 5895 Å 14 0.19 0.59 24 2.5 24 2.5 24 2.5 3.4 41 2.9 530 9.0 0.60 3.4 78 78 78	rf dis- rf dis- enarge arc 5895 Å arc 5895 Å 14 0.19 24 2.5 24 2.5 24 2.5 3.4 41 0.60 3.4 41 2.9 3.4 3.4 73 73 78 78
d Cd Xe 4 Å 2144 Å are	d Cd Xe iÅ 2144Å arc	d Cd Xe iÅ 2144Å arc	d Cd Xe i Å 2144 Å are 03 0.002	d Cd Xe i Å 2144 Å are 03 0.002 04 0.005 0.0032	d Cd Xe i Å 2144 Å are 03 0.002 0.0032 03 0.003 0.0032	d Cd Xe i Å 2144 Å are 03 0.002 0.0032 03 0.003 0.0032	d Cd Xe i Å 2144 Å are 03 0.002 04 0.005 0.0032 03 0.003 04 0.03	d Cd Xe i Å 2144 Å are 03 0.002 04 0.005 0.0032 03 0.003 03 0.003 18 5.1	d Cd Xe i Å 2144 Å are 03 0.002 0.0032 03 0.003 0.0032 04 0.03 18 5,1	d Cd Xe i Å 2144 Å are 03 0.002 0.0032 04 0.003 0.0032 18 5.1 21 18	d Cd Xe i Å 2144 Å are 03 0.002 04 0.003 0.0032 04 0.03 18 5,1 21 18	d Cd Xe i Å 2144 Å are 03 0.002 04 0.003 0.0032 04 0.03 18 5.1 21 18	^d Cd Xe 1 A 2144 A are 03 0.002 04 0.003 0.0032 03 0.003 18 5.1 21 18	^d Cd Xe 1 A 2144 A are 03 0.002 04 0.003 0.0032 03 0.003 18 5.1 21 18	^d Cd Xe 1Å 2144Å are 03 0.002 04 0.003 0.0032 03 0.003 18 5.1 21 18	d Cd Xe 1 A 2144 A are 03 0.002 04 0.003 03 0.003 18 5.1 21 18 21 18
	514	514 0.94	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

September 1970

QUENCHING OF FLUORESCENCE

315

A comment may be made on the two measurements of the self-quenching cross section for NO_2 . The smaller value of 0.9 Å^2 appears to be the more nearly correct one: the larger value found by Myers, et al. (Table I, column p), may be a result of vibrational relaxation in the NO_2^* , increasing the mean wavelength of the fluorescence to a point at which the photomultiplier used in the experiment was unable to respond.

Quenching Model. The earliest attempt at a theoretical correlation of the quenching efficiencies for different gases was that of Rössler,¹⁰ who asserted that the efficiency would be directly proportional to the polarizability α of the gas molecule and to the duration of the collision, *i.e.*, to $\alpha \mu^{1/2}$, where μ is the reduced mass of the collision; this sort of correlation was displayed by the rare gases in quenching excited I_2 . No firmer theoretical interpretation was forthcoming until quite recently, when Selwyn¹¹ derived an expression for the quenching cross section based on a van der Waals interaction between the excited molecule and the quencher.

Essentially, quenching is conceived as taking place as a result of a transition, induced by the collision, from the excited state of the molecule to a repulsive state degenerate with it but of different symmetry. One reason for postulating such a mechanism, in the particular case of iodine, is that free ground-state atoms have been observed following irradiation of the molecule with light having an energy below the excited-state dissociation limit.¹² The effect of the collision is to destroy the symmetry element which prevents the bound and repulsive states from being coupled. This is accomplished by an asymmetric interaction between the excited molecule and the quencher; for uncharged, nonpolar species, the potential of interaction is taken to be the same as that giving rise to the London or van der Waals dispersion energy, namely

$$V_{12} = \frac{e^2}{R_1^3} (X_1 X_2 + Y_1 Y_2 - 2Z_1 Z_2)$$

where R_1 is the distance between the two molecules and (X, Y, Z) represent sums over the coordinates of the electrons in each system. Using this potential in the "Fermi golden rule" result of first-order time-dependent perturbation theory and averaging over phase space give the effective quenching cross section

$$\sigma_{\mathbf{Q}^{2}} = \left(\frac{\pi\mu}{8kT}\right)^{1/2} \left(\frac{12\pi^{3}}{15h}\right) \rho(f) \frac{e^{2}I\alpha}{R_{c}^{3}} |\langle \chi_{E}|\chi_{\nu'}\rangle|^{2} \times \left(|\langle \psi_{\mathbf{b}}|X|\psi_{\mathbf{f}}\rangle|^{2} + |\langle \psi_{\mathbf{b}}|Y|\psi_{\mathbf{f}}\rangle|^{2} + 4|\langle \psi_{\mathbf{b}}|Z|\psi_{\mathbf{f}}\rangle|^{2}\right)$$
(4)

The previously undefined notation in eq 4 is: $\rho(f) =$ density of states for the dissociated atoms; I = ionization potential of the quenching molecule; $R_c =$ mean distance of closest approach of the collision pair, taken to be the hard-sphere distance $(\sigma_Q + \sigma_{M^*})/2$; $\langle \chi_B | \chi_{v'} \rangle$

Figure 1. Quenching correlation for I_2 (B³ π_{ou} ⁺). Data: Δ , v' = 15 (Table I, footnote f); O, v' = 25 (Table I, footnote g); $\times, v' = 43$ (Table I, footnote h); $\Box, v' = 51$ (Table I, footnote i).

= Franck-Condon overlap integral between the wave function for vibrational state v' of the excited molecule and the free-particle wave function for dissociated atoms with kinetic energy E; $|\psi_{\rm b}\rangle =$ electronic wave function of excited molecule; and $|\psi_f\rangle$ = electronic wave function appropriate to the repulsive state reached in the collision-induced predissociation.

The important consequences of eq 4 may be summarized as follows: (i) quenching efficiencies for different gases should obey the parametric dependence

$$\sigma_{
m Q}{}^2 \, \propto \, \mu^{1/2} I \, lpha / R_{
m c}{}^3$$

(ii) a repulsive state coupled to the bound state by an electric-dipole transition is required, which sets requirements on the symmetry of the repulsive state; (iii) for a given electronic state of a molecule, quenching cross sections for different vibration levels should differ by a constant factor representing the relative Franck-Condon overlap; (iv) the quenching rate constant, k_{Q} , should be nearly independent of temperature, since $k_{\rm Q} = \sigma_{\rm Q}^2 \bar{v}$ and $\bar{v} \propto T^{1/2}$ while $\sigma_{\rm Q}^2 \propto T^{-1/2}$.

The test of the predicted parametric dependence is shown in Figures 1-8. The correlation works quite well for I_2 , the system for which it was originally designed (Figure 1); the data for v' = 15, 25, and 43cluster around parallel 45°-slope lines on the log-log plot. The data for v' = 51 show a deviation from these lines; this is taken to indicate the presence of a new mechanism, in this case a "collisional release" process, viz.

$I_2^* + M \longrightarrow I(^2P_{3/2}) + I^*(^2P_{1/2}) + M$

which probably acts in addition to the canonical mechanism

⁽¹⁰⁾ F. Rössler, Z. Phys., 96, 251 (1935).
(11) J. E. Selwyn and J. I. Steinfeld, Chem. Phys. Lett., 4, 217 (1969) (12) L. A. Turner and E. W. Samson, Phys. Rev., 37, 1684 (1931).

$$I_2^* + M \longrightarrow 2I(^2P_{3/2}) + M$$

Evidence for the former process has been furnished independently by Callear, *et al.*,¹³ who have observed the excited atoms being produced.

A clear example of the possibility for different excited electronic states of the same molecule to possess widely differing quenching cross sections is afforded by NO (Figure 2). Three separate correlation lines can be drawn for the $A^2\Sigma^+$, B^2II , and $D^2\Sigma^+$ states, although the data are relatively sparse. However, NO and CO_2 deviate markedly from the $A^2\Sigma^+$ line, as they also do in quenching I_2 (B³II_{0u}, v' = 25) (Figure 1) and CO (Figure 4). Fairly good correlations are also obtained for OH (Figure 3), NO_2 (Figure 6), and SO_2 (Figure 7), but not for N₂ (B³II_g) (Figure 5) and CH₃OH (Figure 8). In the cases of NO_2 and SO_2 , quenching is presumed to occur by a collision-induced internal conversion to high vibrational levels of the ground state, since the excitation energy is less than the N–O or S–O bond energy, as the case may be. The quenching model based on

Figure 2. Quenching correlation for NO. Data: $\bigcirc, \blacklozenge, \triangle$, $A^{2\Sigma+\text{state}}(\text{Table I, footnotes } a-c); \times, B^{2}\text{II}(\text{Table I, footnote } d); \Box, D^{2\Sigma+}(\text{Table I, footnote } e).$

Figure 3. Quenching correlation for OH $(A^2\Sigma^+)$; data of table I, footnootes l-n.

Figure 4. Quenching correlation for CO triplet states; data of Table I, footnote c.

symmetry breaking through van der Waals forces would thus be expected to apply to these cases too, as it seems to do.

Interestingly enough, this model, which is based on a molecular Hamiltonian, also seems to be a good predictor of relative quenching efficiencies for some excited atoms, such as $Hg^{*(1P_1)}$ (Figure 9). The correlation is less good for Na*(²P) (Figure 10), presumably because of specific chemical interactions; further data on rare-gas quenching of this atom would be helpful.

A further test of this model is the temperature dependence of the quenching rate, which is predicted to be temperature independent by eq 4. Edwards¹⁴ has measured the self-quenching constant for I_2 (B³ Π_{0u} , v'

⁽¹³⁾ A. B. Callear and J. F. Wilson, *Trans. Faraday Soc.*, **63**, 1358 (1967); T. W. Broadbent, A. B. Callear, and H. K. Lee, *ibid.*, **64**, 2320 (1968).

Figure 5. Quenching correlation for N_2 (B³IIg); data of Table I, footnote *j*.

Figure 6. Quenching correlation for NO₂ $[{}^{2}\Sigma g({}^{2}B_{1})]$; data of Table I, footnote p.

= 25) over the range 300 to 600°K and finds a slight increase of k_{quench} over this range, so that σ_Q^2 falls off less rapidly than $T^{-1/2}$. He proposes an alternative model, based on the Zener theory of predissociation,¹⁵ to explain his results.

A more direct test is the measurement of the velocity dependence of the unaveraged quenching cross section. Such an experiment has been carried out by Sheridan and Peterson¹⁶ on a beam of metastable nitrogen $(A^3\Sigma_u^+)$ molecules colliding with argon. They fit the cross section to a form

$$(\sigma_{\rm Q}^2)^{1/2} = -a \ln v + b$$

predicted from a spin-exchange model,¹⁷ although they concede that a $\sigma_Q^2 \propto 1/v$ dependence, as implied by

- (14) R. V. Edwards, Ph.D. Thesis, Johns Hopkins University, 1968.
 (15) C. Zener, Proc. Roy. Soc., London, 140, 660 (1933).
- (16) J. R. Sheridan and J. R. Peterson, J. Chem. Phys., 51, 3574
 (1969).
- (17) D. R. Bates, Discuss. Faraday Soc., 33, 7 (1962).

Figure 7. Quenching correlation for $SO_2(\tilde{A}^1B_1)$; data of Table I, footnote r.

Selwyn's model,¹¹ gives a nearly equally satisfactory fit. In summary, quenching of excited molecules by collisions appears to be a complex process, characterized by many open channels, and no one simple model may be able to account in detail for all the systems that have been studied.

Quenching by Noncollision Processes

Magnetically Induced Predissociation. Although the fact that the visible iodine fluorescence is quenched by an external magnetic field had been known for a long time,¹⁸ it was not until quite recently that accurate values for the quenching rate constant as a function of vibrational level became available.¹⁹ This rate depends on the square of the magnetic field strength, $k_{nQ} =$ bH^2 . The rate is obtained from the data by using a modification of the Stern–Volmer plot (eq 1)

$$\frac{I_0}{I} - 1 = \gamma H^2$$

where

 $\gamma^{-1} = (1 + Q'[I_2])/b'$

with $b' = b\tau_{\rm rad}$. If the measured γ^{-1} values are plotted against I₂ pressure, straight lines are obtained, with the intercept at [I₂] = 0 equal to b' and the slope equal to Q'/b'. Thus, the pressure dependence of the magnetic quenching efficiency gives an independent determination of self-quenching constants.

The magnetic quenching rates have a Gaussianshaped dependence on v', with a maximum at $v' \simeq 25$. Huo²⁰ has carried out an *ab initio* calculation of this rate and obtains excellent agreement with our experimental results. This calculation also yields the slope of the repulsive potential curve responsible for the magnetically induced predissociation and the location of its intersection with the B-state potential, which appears to be near v' = 18.

(19) E. O. Degenkolb, J. I. Steinfeld, E. Wasserman, and W. Klemperer, J. Chem. Phys., 51, 615 (1969).

(20) W. Huo, *ibid.*, **52**, 3110 (1970).

⁽¹⁸⁾ W. Steubing, Verh. Deut. Phys. Ges., 15, 1181 (1913).

Figure 8. Quenching correlation for CH₃OH (¹E); data of Table I, footnote s.

Thus far, the B state of iodine is the only system for which magnetic quenching of the fluorescence has been observed. This would seem to be a rewarding area for further investigation, since the phenomenon, where it exists, is a fruitful source of detailed molecular information.

Spontaneous Predissociation. The phenomenon of predissociation is well known to occur in both diatomic and polyatomic molecules. It is usually manifested as the complete absence or breaking off of fluorescence; thus, when fluorescence is observed at all, it is generally presumed that no spontaneous dissociation is occurring. This presumption has recently been shown to be untrue in the case of excited iodine.

The first clear evidence for this was the measurement of the concentration of $I({}^{2}P_{*/2})$ atoms by epr, extrapolated to conditions of zero pressure and magnetic field.²¹ These results indicated that at least 30% of the excited molecules dissociated spontaneously, Chutjian and James²² made a careful comparison of absorption line strengths with radiative lifetimes measured by both pulse and phase-shift methods and found that the measured lifetimes were always shorter than would be calculated from the line strength. This is simply a manifestation of the relationship, analogous to ea 3.

where

$$\tau_{\rm eff}^{-1} = \tau_0^{-1} + k_{\rm nr} \tag{5}$$

$$r_0^{-1} = \frac{64\pi^4}{3hc^3} |R_e|^2 \sum_{v''} \nu_{v'v''} q_{v'v''}$$

in which $\nu_{v'v''}$ and $q_{v'v''}$ are the frequency and Franck-Condon factor, respectively, for each fluorescence band, and $R_{\rm e}$ is the electronic transition moment determined from an absorption measurement. The values of k_{nr} derived from eq 5 indicated that about two-thirds of the excited molecules dissociated spontaneously. Finally,

(21) E. Wasserman, W. E. Falconer, and W. A. Yager, J. Chem. Phys., 49, 1971 (1968).

Figure 9. Quenching correlation for $Hg^{*}({}^{1}P_{1})$; data of A. Granzow, M. Z. Hoffman, and N. N. Litchtin, submitted for publication.

Figure 10. Quenching correlation for Na*(2P); data of H. P. Hooymayers and C. T. J. Alkemade, J. Quant. Spectrosc. Radiat. Transfer, 6, 847 (1966).

Wilson's photodissociation experiments,^{23,24} which are run under collision-free and magnetic-field-free conditions, show unambiguously that atoms are produced by irradiating iodine below the dissociation limit of the $B \leftarrow X$ transition.

The reason that spontaneous predissociation was never suspected in this system is that most predissociation due to curve-crossing has a $k_{\rm nr}$ of the order of 10¹⁰ \sec^{-1} , and thus completely quenches fluorescence. The potentials in I_2 are such that k_{nr} has a value of the order of 10⁶ sec⁻¹, similar to $k_{rad} = \tau_0^{-1}$, and furthermore produces no discernible line broadening in absorption. Chutjian²⁵ has calculated k_{nr} on the basis of a

⁽²²⁾ A. Chutjian and T. C. James, ibid., 51, 1242 (1969).

⁽²³⁾ G. E. Busch, R. T. Mahoney, R. I. Morse, and K. R. Wilson, *ibid.*, 51, 837 (1969). (24) K. R. Wilson, private communication.

⁽²⁵⁾ A. Chutjian, submitted for publication.

Figure 11. Potential curves for I_2 , adapted from Figure 3 of ref 26.

 ${}^{1}\Pi_{1u}$ potential curve approaching but not crossing the left-hand side of the B ${}^{3}\Pi_{0u}$ ⁺ potential, and obtains good agreement with experiment.

(26) R. J. LeRoy, WIS-TCI-331-Rev, University of Wisconsin Theoretical Chemistry Institute, Madison, Wis., Aug 13, 1969.

Potential Curves for Iodine

The many spectroscopic and quenching studies on iodine now furnish enough data to provide a fairly complete picture of the potential curves in iodine, including many of the repulsive states. The $X^{1}\Sigma_{0g}^{+}$, $A^{2}\Pi_{1u}$, and $B^{3}\Pi_{0u}$ + curves are established from absorption and emission spectroscopy. The ${}^{3}\Sigma_{0u}$ – curve is established from magnetic quenching.^{19,20} A ³II_{0g}+ state is required for the collision-induced predissociation and its curve cannot lie too close to the B-state curve; otherwise, the quenching rate would be higher than is actually observed.²⁷ Fortunately, LeRoy's recent careful reexamination²⁶ of the ultraviolet fluorescence in iodine locates a ${}^{3}\Pi_{0g}$ + state in just the right position to be effective in quenching. Finally, Chutjian's calculation²⁵ indicates that a ${}^{1}\Pi_{1u}$ state, lying very close to the ${}^{3}\Pi_{0u}$ + curve, is responsible for spontaneous predissociation, rather than the $A^{3}\Pi_{1u}$ state. The set of curves so derived is shown in Figure 11. These now account for nearly all the molecular states arising from the ${}^{2}P_{3/2} + {}^{2}P_{3/2}$ atomic states, except for some ${}^{3}\Delta$ levels, and furthermore are in just the relative order of energy predicted by Mulliken over 30 years ago.

I thank R. B. Kurzel, E. O. Degenkolb, and J. E. Selwyn for their help in preparing this article. I also thank the National Science Foundation and the Petroleum Research Fund, administered by the American Chemical Society, for their support of the work mentioned herein.

⁽²⁷⁾ J. E. Selwyn, M.S. Thesis, Massachusetts Institute of Technology, June 1969.